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Abstract—With the universal presence of short-range con-
nectivity technologies (e.g., Bluetooth and, more recently, Wi-
Fi Direct) in the consumer electronics market, the delay-
tolerant-network (DTN) model is becoming a viable alternative
to the traditional infrastructural model. Proximity malware,
which exploits the temporal dimension and distributed nature
of DTNs in self-propagation, poses threats to users of new
technologies. In this paper, we address the proximity malware
detection and containment problem with explicit consideration
for the unique characteristics of DTNs. We formulate the mal-
ware detection process as a decision problem under a general
behavioral malware characterization framework. We analyze
the risk associated with the decision problem and design a
simple yet effective malware containment strategy, look-ahead,
which is distributed by nature and reflects an individual node’s
intrinsic trade-off between staying connected (with other nodes)
and staying safe (from malware). Furthermore, we consider
the benefits of sharing assessments among directly connected
nodes and address the challenges derived from the DTN model
to such sharing in the presence of liars (i.e., malicious nodes
sharing false assessments) and defectors (i.e., good nodes that
have turned malicious due to malware infection). Real mobile
network traces are used to verify our analysis.
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I. INTRODUCTION

Mobile consumer electronics permeate our lives. Lap-

top computers, PDAs, and more recently and prominently,

smart-phones, are becoming indispensable tools for our

academic, professional, and entertainment needs. These

new devices are often equipped with a diverse set of

non-infrastructural connectivity technologies, e.g., Infra-red,

Bluetooth, and more recently, Wi-Fi Direct. With the univer-

sal presence of these short-range connectivity technologies,

the communication paradigm, identified by the networking

research community under the umbrella term Delay-tolerant

Networks (DTNs), is becoming a viable alternative to the

traditional infrastructural paradigm. Because of users’ natu-

ral mobility, new information distribution applications, based

on peer-to-peer contact opportunities instead of persistent

connection channels among nodes, are considered to be the

game changer for future network applications.

The popularity of new mobile devices (e.g., smart-

phones), the adoption of common platforms (e.g., Android),

and the economic incentive to spread malware (e.g., spam)

combinedly exacerbate the malware problem in DTNs. Mal-

ware is a piece of malicious code which disrupts the host

node’s functionality and duplicates and propagates itself to

other nodes via contact opportunities.

In the traditional infrastructural model, the carrier serves

as a gatekeeper who can centrally monitor network ab-

normalities and inhibit malware propagation; moreover, the

resource bottleneck for individual nodes naturally limits the

impact of the malware. However, the central gatekeeper and

natural limitations are absent in the DTN model. Proximity

malware, which exploits the temporal dimension and dis-

tributed nature of DTNs in self-propagation, poses serious

threats to users of new technologies and challenges to the

networking and security research community.

A common malware detection method currently in prac-

tice is pattern matching. More concretely, a sample of

malware is first reported by an infected user. The sample

is analyzed by security specialists, and a pattern which

(hopefully) uniquely identifies the malware is extracted; the

pattern can be either code or data, binary or textual. The

pattern is then used for the detection of malware1. The

analysis and extraction often involve extensive manual labor

and expertise. The overhead, the lack of generality, and high

false positive rate in one round of analysis make it unsuitable

for promising DTN applications on smart devices.

The quest for a better malware detection method comes to

the very question of how to characterize proximity malware

in DTNs. In this paper, we consider an approach to charac-

terize proximity malware by the behaviors of an infected

node observed by other nodes in multiple rounds. The

individual observation can be imperfect for one round, but

1More sophisticated techniques exist to cope with metamorphic or
compressed malware, which does not exhibit a single fixed pattern; however,
the pattern matching model still applies conceptually.



infected nodes’ abnormal behavior will be distinguishable in

the long-run. Methods like pattern matching can be used in

one round of observation for the behavioral characterization

of proximity malware.

Instead of assuming a sophisticated malware containment

capability, such as patching or self-healing [1], [2], we con-

sider the simple capability of “cutting off communication”.

In other words, if a node i suspects another node j of being

infected with the malware, i may cease to connect with j
in the future. We want to explore how far such a simple

technique can take us. Our focus is on how individual nodes

make such cut-off decisions based on direct and indirect

observations.

Due to the temporal dimension and distributed nature of

DTNs, the major challenge faced by the proximity mal-

ware behavioral detection and containment mechanism is

a decision problem: when to cut-off? This challenge can

be compared with a motivating example in real life. When

a person smells something burning, he or she is facing

with two choices. One is to call the fire emergency service

immediately; the other is to collect more evidence and to

make a more informed decision later. The first choice is

associated with a high cost for a possible false fire alarm,

while the second choice is associated with the risk of losing

the early opportunity of containing the fire.

We are facing a similar dilemma in the context of proxim-

ity malware in DTNs. Hyper-sensitivity leads to high false

positive while hypo-sensitivity leads to high false negative.

In this paper, we present a simple yet effective solution

which reflects an individual node’s intrinsic trade-off be-

tween staying connected with other nodes and staying safe

from the malware. We also consider the benefits of sharing

observations among nodes and address the challenges of liars

and defectors derived from the DTN model.

We summarize our contributions below:

• We give a general behavioral characterization of prox-

imity malware, which allows for functional but imper-

fect assessments on malware presence.

• Under the behavioral malware characterization, and

with a simple cut-off malware containment strategy,

we formulate the malware detection process as a de-

cision problem. We analyze the risk associated with

the decision and design a simple yet effective malware

containment strategy, lookahead, which is distributed

by nature and reflects an individual node’s intrinsic

trade-off between staying connected with other nodes

and staying safe from malware (Section III-A).

• We consider the benefits of sharing assessments among

directly connected nodes and address the challenges

derived from the DTN model in the presence of liars

(i.e., malicious nodes sharing false assessments) and

defectors (i.e., good nodes that have turned malicious

due to malware infection) (Section III-B). Real mobile

network traces are used to verify our analysis and

design (Section IV).

II. PROBLEM FORMULATION

Consider a DTN consisting of n nodes. The neighbors of

a node are the nodes it has contact opportunities with. Each

node keeps a log, chronologically recording the neighbors

it had contact with, and uses this log to estimate its contact

pattern with them.

A proximity malware is a piece of malicious code which

disrupts the host node’s functionality and has a chance of

duplicating itself to other nodes during inter-nodal commu-

nication; when duplication occurs, we say the other node is

infected by the malware.

Suppose each node is capable of assessing the other party

for suspicious actions after each encounter, resulting in a

binary assessment of either suspicious or non-suspicious.

An example of a suspicious action is sending a self-signed

program which modifies system configurations.

At any particular time, we say a node’s nature is either

evil or good based on if it is or is not infected by the

malware. We assume that the suspicious-action assessment is

an imperfect, but functional indicator of malware infection:

it may assess an evil node’s actions as “non-suspicious” (or

a good node’s actions as “suspicious”) at times, but most

suspicious actions are correctly attributed to evil nodes.

By the functional assumption on the suspicious-action

assessment, we characterize a node’s nature by its frequency

of suspicious actions. More specifically, if node i has N
(pair-wise) encounters with its neighbors and sN of them are

assessed as suspicious by the other party, its suspiciousness

Si is defined as:

Si = lim
N→∞

sN
N

; (1)

we assume the existence of such a limit and therefore have

Si ∈ [0, 1]. A number Le ∈ (0, 1) is chosen2 as the line

between good and evil. Node i is deemed good if Si ≤ Le

or evil if Si > Le. In other words, we draw a fine line

between good and evil, and judge a node by its deeds.

Based on the past assessments, a node i can decide

whether to refuse connecting with a neighbor j in the future

(we say that “i cuts j off” if i ceases connecting with j).

The reason i might refrain from cutting j off immediately

upon observing a single suspicious assessment (against j)

is the cost of losing a good neighbor (and the service it

can provide) based on insufficient indicting evidence (the

assessments are imperfect by our assumption).

Our questions are:

1) How shall a node make its cut-off decision?

2) Will the evil nodes eventually be cut off from the

network as a collective result derived from nodes’

individual decisions?

2We simply assume that Le is given here. In reality, if the suspicious-
action assessment is a functional discriminant feature of malware, Le can
be chosen as the (Bayesian) decision boundary which minimizes the false
positive rate.



3) Will the network disintegrate from nodes’ (wrong)

decisions about cutting off good nodes?

III. MECHANISM DESIGN

In the following discussion, we investigate the decision

process of a node i, which has k neighbors {n1, n2, . . . , nk},

against a neighbor j (with no loss of generality, we let j be

n1).

A. Household Watch

Let us first consider the case in which all of the evidence

node i uses to make the cut-off decision against j is i’s own

assessment of j. Since only direct observations are used in

this model, we call it household watch.

Let A = (a1, a2, . . . , aA) be the assessment sequence (ai
is either 0 for “non-suspicious” or 1 for “suspicious”) in

chronological order, i.e., a1 is the oldest assessment, and

aA is the newest one.

Bayes’ theorem tells us:

P (Sj |A) ∝ P (A|Sj)× P (Sj). (2)

P (Sj) encodes our prior belief on j’s suspiciousness Sj ;

P (A|Sj) is the likelihood of observing the assessment

sequence A given Sj ; P (Sj |A) is the posterior probability,

representing the plausibility of j having a suspiciousness

of Sj given the observed assessment sequence A. Since

the evidence P (A) does not involve Sj and serves as a

normalization factor in the computation, we omit it and write

the quantitative relationship in the less cluttered proportional

form.3

By adopting the Bayesian interpretation of these probabili-

ties, we shall note that all of these quantities are conditioning

on some background knowledge B, which, in our case, is the

problem formulation in Section II, i.e., Sj ∈ [0, 1], the exis-

tence of the threshold Le, the infection cost Ce
i , and the cut-

off cost Cg
i . Furthermore, we assume that assessments are

mutually independent; more specifically, for any two distinct

assessments al and am, we have P (al|am, B) = P (al|B)
and P (am|al, B) = P (am|B). Due to the universal presence

of B as a condition, to simplify the notation, we remove B
from the symbols and write, for instance, P (Sj |B) as P (Sj),
with the implicit understanding that Sj is conditioned on B.

By the derivation in the Appendix, we have:

P (Sj |A) ∝ SsA
j (1− Sj)

A−sA (3)

and

argmax
Sj∈[0,1],A6=∅

P (Sj |A) =
sA
A

, (4)

in which sA is the number of suspicious assessments in A
(i.e., the assessments equal to 1), and A = |A| is the number

of assessments collected so far.

3When we use proportional form in this paper, we have implicitly done
the same thing.
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Figure 1. The normalized posterior distribution P (Sj |A) for assessment
samples with different sizes. The two numbers for each line of the
legend show the number of suspicious and non-suspicious assessments,
respectively. In each case, the ratio between suspicious and non-suspicious
assessments is 1 : 3. All distributions have a maximal value at Sj =
1

1+3
= 0.25. However, the distribution becomes more sharp with a

larger sample, which corresponds to a sense of increasing certainty of the
suspiciousness Sj .

Figure 1 shows the normalized posterior distributions

P (Sj |A) for assessment samples with different sizes, given

by Equation 3. In each case, the ratio between suspicious

and non-suspicious assessments is the same, i.e., 1:3; by

Equation 4, Sj =
1

1+3 = 0.25 is the maximizer of P (Sj |A),
which is clearly shown in Figure 1. The distribution becomes

sharper with a larger sample; this gives an intuitive sense of

increasing certainty of the suspiciousness Sj .

However, what holds i back from “cutting off j immedi-

ately upon observing the first few suspicious assessments”

is not the exact value of Sj , but the risk of misjudging j’s

true nature and hence making the wrong cut-off decision.

From i’s perspective, after observing an assessment se-

quence A, the probability that j is good is:

Pg(A) =

∫ Le

0

P (Sj |A) dSj , (5)

and the probability that j is evil is:

Pe(A) = 1− Pg(A) =

∫ 1

Le

P (Sj |A) dSj . (6)

Let C = (
∫ 1

0
SsA
j (1 − Sj)

A−sA)−1 dSj be the (probability)

normalization factor in Equation 3, we have:

Pg(A) = C

∫ Le

0

SsA
j (1− Sj)

A−sA dSj (7)

and

Pe(A) = C

∫ 1

Le

SsA
j (1− Sj)

A−sA dSj . (8)

When Pg(A) ≥ Pe(A), the evidence collected so far (i.e.,

A) is favorable to j and leads i to believe that j is good. In

contrast, when Pg(A) < Pe(A), the evidence is unfavorable

to j and i needs to decide whether to cut j off.

The cut-off decision problem has an asymmetric structure

in the sense that cutting j off will immediately terminate

the decision process (i.e., i will cease connecting with j;

no further evidence will be collected) while the opposite



decision will not. Thus, we only need to consider the

decision problem when Pg(A) < Pe(A), i.e., i considers

to cut j off due to unfavorable evidence against j.

To see whether i should cut j off when Pg(A) < Pe(A),
we need to understand the risk (for i) carried with the

decision of “cutting j off”. To estimate the risk, i needs

to look ahead.

More concretely, given the current assessment sequence

A = (a1, . . . , aA), the next assessment aA+1 (which has

not been taken yet) might be either 0 (non-suspicious) or 1
(suspicious).

Let A′ = (A, aA+1). If aA+1 = 1, the evidence becomes

even more unfavorable to j, so Pg(A
′) < Pg(A) <

Pe(A) < Pe(A
′)4.

If aA+1 = 0, however, by Equation 7 and 8, it might turns

out that either Pg(A
′) < Pe(A

′) or Pg(A
′) ≥ Pe(A

′).
If Pg(A

′) < Pe(A
′), we say that i’s decision of cutting j

off is one-step-ahead robust. Otherwise, the decision is not

one-step-ahead robust. If the cut-off decision is one-step-

ahead robust, i knows that exposing itself to the potential

danger of infection by collecting one further assessment on

j will not change the outlook that j is evil.

Similarly, i can look multiple steps ahead. In fact, the

number of steps i is willing to look ahead is a parameter of

the decision process rather than a result of it. This parameter

shows i’s willingness to expose to a higher infection risk

in exchange for a (potentially) lower risk of cutting off a

good neighbor; in other words, it reflects i’s intrinsic trade-

off between staying connected (and hence receiving service)

and keeping itself safe (from malware infection).

Definition 1 (Look-ahead λ): The look-ahead λ is the

number of steps i is willing to look ahead before making a

cut-off decision.

We can make a similar decision robustness definition for

look-ahead λ.

Definition 2 (λ-robustness): At a particular point in i’s
cut-off decision process against j (with assessment sequence

A = (a1, . . . , aA)), i’s decision of cutting j off is said to

be λ-step-ahead robust, or simply λ-robust, if the estimated

probability of j being good Pg(A
′) is still less than that of

j being evil Pe(A
′) for A′ = (A, aA+1, . . . , aA+λ), even if

the next λ assessments (aA+1, . . . , aA+λ)) all turn out to be

non-suspicious (i.e., 0).

Given the look-ahead λ, the proposed malware contain-

ment strategy is to proceed with cutting off if the decision

is λ-robust and refrain from cutting off otherwise.

We wrap up the discussion on the household-watch model

by illustrating how the look-ahead λ relates to i’s intrinsic

trade-off between staying connected and staying safe.

4We prove this inequality in the Appendix. But the explanation here
appeals to intuition and therefore serves our purpose better.

Since the only way to be infected by the malware is to

contact an already infected node, i.e., an evil node, it is

natrual to relate the risk of infection with the times of contact

with a suspect evil node. Suppose the risk of infection is

R(n) in which n is the contact times between the node pair.

One possible instantiation of R(n) is R(n) = 1− (1− p)n,

in which p is the (fixed) infection probability for a single

encounter.

Suppose i’s cost of cutting j off (and hence losing j’s

service) is Ci(j). To be comparable with the instantiation

R(n) = 1 − (1 − p)n, let 0 < Ci(j) < 1. One possible

instantiation of Ci(j) is j’s frequency in i’s contact history.

If i suspects that j is evil from the observation Pg(A) <
Pe(A

′), λ can be chosen by λ = max{n|R(n) ≤ Ci(j)} =
max{n|1− (1− p)n ≤ Ci(j)}. In plain words, λ is chosen

to be the maximal number of steps i is willing to look ahead

in which the infection risk is less than the cost of cutting

off.

B. Neighborhood Watch

Besides the direct evidence which i could use to judge

j’s nature, i could ask for its other neighbors’ assessments

on j.

This extension of evidence collection is inspired by the

real-life neighborhood (crime) watch program, which en-

courages residents to report suspicious criminal activities in

their neighborhood and to alert their neighbors. Similarly, i
shares its assessments on j with its neighbors and receives

their assessments in return. By Equation 3, the suspicious-

ness estimation does not depend on the temporal order of

assessments. Therefore, neighbors may share an aggregate

of their assessments (i.e., the number of suspicious and non-

suspicious assessments), which is lightweight in comparison

with the whole assessment sequence.

Before proceeding to further discussions, we make explicit

the assumptions in the neighborhood-watch model: an evil

node’s behavior is consistent and non-targeted.

• Consistency. This rephrases the functional assump-

tion in characterizing a node’s nature by the suspi-

ciousness (Equation 1). Only those nodes with suspi-

ciousness higher than the threshold Le are capable of

transmitting the malware. In other words, a node cannot

do the evil (transmitting the malware) and pretend to

be good (maintaining a low suspiciousness).

• Non-targetedness. An evil node j’s suspicious ac-

tions should be observable to all of its neighbors rather

than a specific few. Otherwise, if j targets at i, i’s other

neighbors’ opinions, even faithful ones, only confuse

i. This assumption is vital to all evidence collecting

methods which incorporate neighbors’ observations.

The benefit of collecting and applying the additional

evidence from neighbors is the expanded scope. The notion

of suspiciousness, as defined in Equation 1, which charac-

terizes the nature of j, is essentially global. However, the



assessments i has on j are local. The possible divergence in

the global and the local assessment statistics might lead to

i’s misjudgment on j’s nature. Sharing assessments among

a group of neighbors will help to expand the scopes of

all parties and therefore lead to better estimation on the

assessment target’s true suspiciousness.

1) Challenges: All of the benefits in incorporating neigh-

bors’ assessments hinge upon the faithfulness assumption,

which states that the neighbors will report their assessments

without exaggeration or understatement. However, in the

context of malware containment, there are two cases in

which the faithfulness assumption fails to hold which we

call the liars and the defectors.

Liars are those evil nodes whose purpose is to confuse

other nodes by sharing false assessments. A false assessment

is either a false praise or a false accusation. False praises

understate evil nodes’ suspiciousness while false accusations

exaggerate good nodes’ suspiciousness. Furthermore, a liar

can fake assessments about nodes that it has never had

contact with. To hide their true nature, liars may refrain

from spreading the malware to its neighbors and appear to

have a low suspiciousness.

Defectors are those nodes which change their nature due

to malware infection. They start out as good nodes and

faithfully share assessments with their neighbors; however,

due to malware infection, they become evil nodes after

a while. Their behaviors after the infection are under the

control of the malware.

The break-down of the faithfulness assumption brings

up the issue of evidence filtering. Two extreme, but naive

evidence-filtering strategies are: 1) to trust no one and 2) to

trust everyone. The former degenerates to the household-

watch model with the twist of the defectors (defectors

change their nature and hence their behavioral pattern); the

latter leads to confusion among good nodes, which might

induce undesirable cut-off decisions.

In this section, we propose an evidence-filtering strategy

which, in the neighborhood-watch model, limits the negative

influence of the liars on evidence fusion and detects the

defectors more promptly.

Again, before proceeding to the detailed analysis below,

we explicitly state the assumptions in addition to the con-

sistency and non-targetedness assumptions,

• Majority. We assume the majority of the neighbors

of the node under consideration are good. Otherwise,

there is simply not enough evidence to estimate a node’s

suspiciousness in the presence of liars.

2) Evidence: We first specify the concrete form of evi-

dence that we have been abstractly referring to so far.

At each encounter, a pair of nodes (which are neighbors

themselves, by definition) exchange their own aggregated

assessments on their neighbors (with the exception of the

assessments on the other party) with each other. More

concretely, for a pair of nodes i and j (which are neighbors

themselves), let Ni and Nj be the neighbors of i and

j, respectively. At each encounter, i shares with j its

aggregated assessments (i.e., the number of suspicious vs.

non-suspicious assessments) on n for each n ∈ Ni − {j};

similarly, j shares with i its aggregated assessments on each

neighbor n ∈ Nj − {i}.

Since the cut-off decision only needs to be made against

a neighbor, i only considers the aggregated assessments

of its own neighbors Ni ∩ (Nj − {i}) from the evidence

provided by j. Moreover, since there is no superimposed

trust relationship among the nodes, i and j only share their

own aggregated assessments instead of also forwarding the

ones provided by their neighbors.

3) Initialization: In our evidence filtering strategy, there

is an initialization phase, during which the nodes acquaint

themselves with their neighbors (by exchanging evidence)

without using their neighbors’ evidence in the cut-off de-

cision process. The motivation for the initialization phase

is to prevent the liars (which are the minority among

the neighbors by our assumption) to dominate the cut-off

decision process in the early phase.

To understand this, let us consider the following (some-

what extremal) scenario.

Suppose the first two nodes i meets are j and k. i makes a

“non-suspicious” assessment on j after the (first) encounter.

Then, i meets with k, during which k claims that it has

1000 suspicious and 0 non-suspicious encounters with j.

If i believes k, it will reach the conclusion that j has a

suspiciousness very close to 1 (since j has 1000 suspicious

and 1 non-suspicious encounters with its neighbors, as far

as i knows), which is very likely to lead i to cut j off.

However, without further evidence, it is equally plausible

that k is lying and cutting j off is a wrong decision for

i. The initialization phase provides i with the opportunity

to collect further evidence without hastening to make the

cut-off decision against j.

4) Evidence Aging: The presence of defectors breaks

yet another assumption we have been using up to this

point. Namely, a node’s nature, as characterized by the

suspiciousness in Equation 1, can change over time. More

specifically, a defector starts as a good node but turns evil

due to malware infection; the assessments collected before

the defector’s change of nature, even faithful, are misleading.

What we need here is to explicitly introduce a temporal

dimension into the evidence filtering strategy. More con-

cretely, we need to discard those assessments which are too

old; in other words, the evidence is temporally decaying,

which we simply call evidence aging.

To implement evidence aging, a node can associate a

timestamp with each aggregated assessment it receives from

its neighbor. Suppose the current time is T ; only those

assessments with a timestamp after T − TE for a certain

temporal interval TE , i.e., the difference between the ag-

gregated assessment at the moments T and T − TE , are



considered relevant in the cut-off decision. We call TE the

(evidence) aging window.

The aging window TE alleviates the defector problem.

To see this, suppose a good node infects the malware at

the moment T . Without evidence aging, all evidence before

T mounts to testify that the node is good; if the amount

of the prior evidence is large, it may take a long time

for its neighbors to find out about its change in nature. In

comparison, with evidence aging, at the moment T + TE ,

all prior evidence expires and only those assessments after

the change of nature are considered relevant.

However, we shall note that, in practice, the choice of

the aging window TE is highly context-dependent. More

explicitly, though small TE may speed up the detection

of defectors, it is imperative that TE is large enough to

accommodate enough assessments to make a sound cut-

off decision. If TE is too small, a node simply does not

have enough assessments for a λ-robust cut-off decision

(Definition 2).

5) Evidence Filtering: Though evidence aging alleviates

the defector problem, it does not address the liar problem.

In this section, we consider the problem of evidence filtering

which limits (if not eliminates) the negative impact of liars

on the evidence quality.

In the following exposition, we consdier a node i’s
evidence-filtering problem on the evidence provided by its

neighbor k concerning another neighbor j, i.e., whether i
should use the aggregated assessment provided by k (within

the evidence aging window TE) in i’s cut-off decision

against j.

• During the initialization phase, i accumulates but does

not use the aggregated assessments on j provided by

its other neighbors (in particular, k). The only evidence

it uses during this phase is its own assessments on j.

• After the initialization phase, i starts to incorporate

filtered evidence provided by its neighbors. Now, during

their encounter, i receives from k its (alleged) aggre-

gated assessment on j. Let A be all of the aggregated

assessments (on j) i collects so far (including its own

and those from k), and let Ak be the aggregated

assessment (on j) that i receives from k within the

evidence aging window TE . By Equation 7, i computes

the probabilities Pg(Ak) and Pg(A − Ak) that j is

good with the evidence Ak provided by k and all of

the evidence A−Ak not provided by k.

• If the difference between Pg(Ak) and Pg(A − Ak) is

greater than a pre-specified number δ, i will not use the

evidence provided by k in its cut-off decision against

j, and the evidence provided by k within TE will be

discarded; otherwise, i will use the evidence provided

by k in this particular encounter.

We call the number δ the dogmatism of i. It reflects i’s
cautiousness against incorporating the evidence (provided

by a single neighbor) which drastically differs from the

evidence provided by others.

Definition 3 (Dogmatism): The dogmatism δ of a node

i is the evidence filtering threshold in the neighborhood-

watch model. i will use the evidence Ak provided by its

neighbor k within the evidence aging window TE only if

|Pg(A − Ak) − Pg(Ak)| ≤ δ, in which A is all of the

evidence that i has (including its own assessments) within

TE .

Now, we give an intuitive explanation on why, by using

the dogmatism δ defined in Definition 3, the evidence-

filtering strategy outlined above alleviates the liar problem.

By assumption, the majority of a node’s neighbors are

good. Thus, we may consider the case of a single liar. Again,

by assumption, within the evidence aging window TE , the

good neighbors have enough assessments for suspiciousness

estimation. Therefore, if we exclude the liar, the evidence

collected from other (good) neighbors will lead to a good

enough suspiciousness estimation.

By this observation, the only way that the single liar can

confuse its neighbors is to claim to have sizable (fake) evi-

dence which drastically differs from the evidence provided

by the other (good) nodes. This is exactly the situation that

the dogmatism δ is designed to resolve.

With multiple liars, by a similar analysis as above,

the evidence-filtering strategy using the dogmatism δ will

exclude the evidence provided by those influential liars

which, if incorporated, will lead to erroneous suspiciousness

estimations.

6) Summary: In the neighborhood-watch model, there is

an initialization phase during which each node accumulates

but does not use the evidence (aggregated assessment)

provided by its neighbors. During this phase, a node only

uses its own assessments in making its cut-off decision.

After the initialization phase, each node starts to incor-

porate filtered evidence provided by its neighbors. For a

particular encounter, only if the evidence provided by the

neighbor (within the evidence aging window TE) passes the

dogmatism test (Definition 3) will the evidence provided

in this particular encounter be used in making a cut-off

decision. Otherwise, all of the evidence provided by this

neighbor within TE will be ignored.

IV. SIMULATION

A. Datasets

We verify our design with two real mobile network traces:

Haggle[3] and MIT reality[4].

The raw datasets are rich in information, many of which

are irrelevant to our study, e.g., call logs and cell tower IDs

for MIT reality. Therefore, we remove the irrelevant fields

and only retain the nodal IDs and time-stamp for each pair-

wise nodal encounter. Since the Haggle dataset has only

22, 459 entries and spans 3 days, we repeat it another 3 times



Table I
DATASET STATISTICS.

nodes entries time span avg. interval

Haggle 41 89, 836 12 days 12 secs

MIT reality 96 114, 046 490 days 371 secs

Table II
NEIGHBOR NATURE AND CUT-OFF DECISION COMBINATION.

cut-off no cut-off

evil neighbor true positive false negative

good neighbor false positive true negative

to make it into a dataset with 89, 836 entries and spanning 12
days. The statistics for the clean-up datasets are summarized

in Table I.

B. Setup

Without loss of generality, we choose Le = 0.5 to be the

line between good and evil. For each dataset, we randomly

pick 10% of the nodes to be the evil nodes and assign them

with suspiciousness greater than 0.5; the rest of the nodes

are deemed as good nodes and are assigned suspiciousness

less than 0.5.

For a particular pairwise encounter, a random number is

generated for each node; a node receives a “suspicious” as-

sessment if its random number is greater than its suspicious-

ness and receives a “non-suspicious” assessment otherwise.

Thus, each assessment is binary, while the frequency of

“suspicious” assessments for a particular node reflects its

suspiciousness.

As noted at the end of Section III-B4, the choice of the

aging window TE is context-dependent. We choose an aging

window of size of 20 minutes for Haggle and 20 days for

MIT reality.

C. Performance Metric

The performance comparison is based on two metrics:

detection rate and false positive rate. More concretely, for

each good node, by the “neighbor nature” and “cut-off

decision” combination, the eventual cut-off decision made

by the good nodes on its neighbors can be categorized

as follows: true positive (evil neighbor gets cut off), false

negative (evil neighbor stays connected), true negative (good

neighbor stay connected), and false positive (good neighbor

gets cut off), as shown in Table II.

For each category, we sum up all of the corresponding

decisions made by the good nodes (it is not useful to

consider the cut-off decision for the evil nodes) and obtain

four counts: TP (true positive), FN (false negative), TN
(true negative), and FP (false positive). Then, the detection

rate DR is defined as:

DR =
TP

TP + FN
× 100%,
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Figure 2. Bayesian decision with and without the look-ahead extension
for Haggle. “Bayesian” shows the vanilla Bayesian decision; “λ-robust”
shows λ-robust decision.
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Figure 3. Bayesian decision with and without the look-ahead extension for
MIT reality. “Bayesian” shows the vanilla Bayesian decision; “λ-robust”
shows λ-robust decision.

and false positive rate FPR is defined as:

FPR =
FP

FP + TN
× 100%.

In plain words, the detection rate is the percentage of all fo

the links between a good node and a bad one that rightly

get cut off; false positive rate is the percentage of all of the

links between a pair of good nodes that wrongly get cut off.

High detection rate and low false positive rate are desir-

able; depending on the context, we might put more emphasis

on either. For instance, if the result of a particular round of

simulation produces TP = 121, FN = 26, FP = 118 and

TN = 1162, then we have DR = 121/(121+26)×100% =
82.31% and FPR = 118/(118 + 1162)× 100% = 9.22%.

D. Results

1) Look-ahead λ: We first evaluate the performance of

the Bayesian decision with and without the look-ahead λ
extension (i.e., λ-robust decision) in the household-watch

model (i.e., no assessment sharing). The vanilla Bayesian

decision does not look ahead and proceed with cutting

off once Pg(A) (Equation 7) becomes less than Pe(A)
(Equation 8).

Figures 2 and 3 show the performance comparison for the

two data sets.

Both datasets show the same trend. The vanilla Bayesian

decision shows both the highest detection rate and the
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Figure 4. Effect of dogmatism δ on Haggle. Look-ahead is 3. “none”
takes no indirect evidence; “all” takes all indirect evidence; “dogma” a, b,
and c takes a dogmatism of 0.0001, 0.0010, and 0.0100, respectively.

highest false positive rate; both rates drop with increasing

look-ahead. However, the false detection rate drops much

faster than detection rate. Indeed, for the Haggle dataset,

though the vanilla Bayesian decision shows 100% detection

rate, it also has a high false positive rate of 54.84%. In

contrast, a 2-robust decision has a detection rate of 94.56%
while having a relatively low false positive rate of 24.30%.

The results confirm the intuition that leads to the look-

ahead extension to the Bayesian decision: being conservative

in the cut-off decision by looking into the future helps

in maintaining connections while not compromising much

safety (from the malware).

In certain scenarios, trading a small decrease in detection

rate for a large decrease in false positive rate is worthwhile.

In those scenarios, the λ-robust decision process provides a

simple yet effective method to stay connected while cutting

off most connections with malware-infected nodes.

2) Dogmatism δ: We also evaluate the effect of dogma-

tism δ on filtering false evidence in the neighborhood-watch

model. We use a look-ahead λ = 3 for this purpose.

In our study, 10% of the evil nodes play the dual role of

evil-doers and liars. There are many possible liar strategies.

We adopt an exaggerated false praise/accusation strategy.

More specifically, a liar (falsely) accuses good nodes for

suspicious actions and (falsely) praises other evil nodes for

non-suspicious actions; besides, to exert major influence,

they exaggerate the false praise/accusation by 10 times

(since they are only 10% of the whole population).

We simulate the 3-robust decision with dogmatism δ
taking the values 0.0001, 0.0010, and 0.0100. To see how

it affects the evidence filtering, we also compare it with

two other (naive) evidence filtering methods: 1) taking none

indirect evidence, i.e., filtering all evidence; 2) taking all

indirect evidence, i.e., filtering no evidence. The results are

shown in Figures 4 and 5.

A comparison of “none” and “all” in both Figures 4

and 5 shows how the liar strategy drastically affects the

performance. The “all” is rendered completely useless by

taking all indirect evidence indiscriminately. In contrast, by

filtering the evidence with the dogmatism test (Definition 3),
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Figure 5. Effect of dogmatism δ on MIT reality. Look-ahead is 3. “none”
takes no indirect evidence; “all” takes all indirect evidence; “dogma” a, b,
and c takes a dogmatism of 0.0001, 0.0010, and 0.0100, respectively.

the detection rate is increased (compared to “none”) with a

modest increase in the false positive rate. The detection rate

is almost doubled in MIT reality, which is in plain sight by

comparing “none” and “dogma a”.

We note that, in both datasets, the one with the smallest

dogmatism (0.0001) shows the best overall performance.

However, we should not make an induction from this ob-

servation that smaller dogmatism always leads to a better

performance. This is because dogmatism δ = 0 basically

degenerates to “none”, which has inferior detection rate than

the dogmatism shown here. Therefore, we conjecture that

there is a dogmatism below which the performance begins

to degrade. We plan to look into this in the future.

V. RELATED WORK

Proximity malware and existing prevention schemes. A num-

ber of studies demonstrate the severe threat of proximity

malware propagation. Su et al. collected Bluetooth scanner

traces and used simulations to show that malware can

effectively propagate via Bluetooth [5]. Yan et al. developed

a Bluetooth malware model [6]. Bose and Shin showed

that malware that uses both SMS/MMS and Bluetooth can

propagate faster than by messaging alone [7]. Rather than

assuming a sophisticated malware containment capability,

such as patching or self-healing in previous works[1], [2],

we base our design on quarantine and develop a decision

mechanism using direct and indirect observations to deal

with proximity malware.

Packet forwarding in mobile networks. In mobile net-

works, one cost-effective way to route packets is via short-

range communication capabilities of intermittently con-

nected smartphones [8], [9], [10]. While early work in

mobile networks used a variety of simplistic random i.i.d.

models, such as random waypoint, recent findings [11] show

that these models may not be realistic. Moreover, many

recent studies [11], [12], [13], based on real mobile traces,

revealed that nodes’ mobility showed certain social network

properties. We use two real mobile network traces in our

study.



Trust evaluation schemes. We base our design on the ob-

servation that trust evaluations can link past experiences

with future predictions. Various frameworks[14] have been

designed to model trust relationships. Three schools of

thoughts emerge from studies. The first one uses a central

authority, which by convention is called the trusted third

party. In the second school, one global trust value is drawn

and published for each node, based on other nodes’ opinions

of it. EigenTrust[15] is an example. The last school includes

the trust management systems that allow each node to have

its own view of other nodes [16]. Unlike these works, we

evaluate trustworthiness on pieces of evidence rather than

on individual nodes; this allows us to promptly cope with

changing nature of nodes with minimum overhead.

VI. CONCLUDING REMARKS

In this paper, we address the proximity malware detection

and containment problem with explicit consideration for the

characteristics of DTNs. Rather than relying on a particular

malware detection technique (e.g., viral pattern matching),

we propose a general behavioral characterization of malware

infection, which allows for functional but imperfect assess-

ments on malware presence. Under this framework, we for-

mulate the malware detection process as a decision problem,

analyze the risk associated with the decision problem, and

design a simple yet effective malware containment strategy,

lookahead, which is distributed by nature and reflects an

individual node’s intrinsic trade-off between staying con-

nected (with other nodes) and staying safe (from malware).

Furthermore, we consider the benefits of sharing assessments

among directly connected nodes and address the challenges

derived from the DTN model in the presence of liars (i.e.,

malicious nodes sharing false assessments) and defectors

(i.e., good nodes that have turned malicious due to malware

infection). Real mobile network traces are used to verify

our analysis. In prospect, the proposed behavioral malware

characterization and the presented malware detection and

containment method provide clearer understanding on the

prevention of proximity malware in DTNs and serve as a

foundation for future work along this line.

APPENDIX

A. Posterior P (Sj |A)

The assumption on the background knowledge B in

Section III-A leads to the following observations:

• By the principle of maximal entropy[17] (which states

that, subject to known constraints, or testable informa-

tion, the probability assignment best representing our

state of knowledge is the one which maximizes the en-

tropy as defined by Shannon[18]), before obtaining any

assessment, a node i which holds no prejudice against

another node j should assign a uniform distribution to

the prior P (Sj), which is

P (Sj) = 1, (9)

since by definition Sj ∈ [0, 1]. Any other assignment of

P (Sj) reflects prejudice that i holds against j, which

is not warranted by our assumption on the background

knowledge B.

• The independence between pairs of assessments implies

the equivalence of batch and sequential computation for

P (Sj |A). More precisely, Equation 2 shows the batch

computation for P (Sj |A). If we apply the assessment

sequentially by using the posterior of the previous

round as the prior of this round, we have:

P (Sj |A) = P (Sj |a1, . . . , aA)

∝ P (aD|Sj , a1, . . . , aD−1)

× P (Sj |a1, . . . , aA−1)

= P (aD|Sj)× P (Sj|a1, . . . , aA−1)

. . .

∝ P (Sj)
D
∏

k=1

P (ak|Sj).

(10)

By the definition of suspiciousness Sj in Equation 1 and

the independence among assessments, we have:

P (ak|Sj) =

{

Sj for ak = 1
1− Sj for ak = 0

. (11)

By Equations 9, 10, and 11, we obtain Equation 3:

P (Sj |A) ∝ SsA
j (1− Sj)

A−sA ,

in which sA is the number of suspicious assessments in A
(i.e., the assessments equal to 1), and A = |A| is the number

of assessment collected so far.

B. Posterior Maximizer

By Equation 3, we can calculate the Sj ∈ [0, 1] which

maximizes P (Sj |A). Let a = sA and b = A− sA. If a = 0
and b 6= 0, Sj = 0 is the maximizer; conversely, if a 6= 0
and b = 0, Sj = 1 is the maximizer. If both a and b are both

non-zero, let C be the normalization constant in Equation 3

(which is a constant for Sj), we have:

dP (Sj |A)

dSj

=
d

dSj

(

CSa
j

b
∑

k=0

(

b

k

)

(−Sj)
k

)

= CaSa−1
j

b
∑

k=0

(

b

k

)

(−Sj)
k

− CbSa
j

b−1
∑

k=0

(

b− 1

k

)

(−Sj)
k

= CSa−1
j (1− Sj)

b−1 (a(1− Sj)− bSj) .

The unique S ∈ (0, 1) which makes d
dSj

P (Sj |A) = 0 is

the Sj which satisfies a(1− Sj)− bSj = 0, i.e, Sj =
a

a+b
.



Moreover, it maximizes P (Sj |A), even when either a or b
(but not both) is zero. Therefore, we have:

argmax
Sj∈[0,1],A6=∅

P (Sj |A) =
a

a+ b
=

sA
A

,

which is exactly Equation 4.

C. Monotonicity of Pg(A) and Pe(A) on sA

By Equation 5 and 6, Pg(A) = 1−Pe(A). Thus, we only

need to prove the monotonicity of any one of them; the other

follows naturally.

Here, we prove that Pg(A) is a monotonically decreasing

function on sA.

By Equation 7, let a = sA and b = A−sA, we only need

to prove:

(

∫ 1

0

Sa
j (1− Sj)

b+1 dSj)
−1

∫ Le

0

Sa
j (1− Sj)

b+1 dSj

≥ (

∫ 1

0

Sa+1
j (1− Sj)

b dSj)
−1

∫ Le

0

Sa+1
j (1− Sj)

b dSj ,

or, equivalently,

∫ 1

0

Sa+1
j (1− Sj)

b dSj

∫ Le

0

Sa
j (1− Sj)

b+1 dSj

≥

∫ 1

0

Sa
j (1− Sj)

b+1 dSj

∫ Le

0

Sa+1
j (1− Sj)

b dSj .

Subtract
∫ Le

0
Sa+1
j (1 − Sj)

b dSj

∫ Le

0
Sa
j (1 − Sj)

b+1 dSj

from both sides, we get

∫ 1

Le

Sa+1
j (1− Sj)

b dSj

∫ Le

0

Sa
j (1− Sj)

b+1 dSj

for the left side and

∫ Le

0

Sa+1
j (1− Sj)

b dSj

∫ 1

Le

Sa
j (1− Sj)

b+1 dSj

for the right side.

Finally, we have:

left =

∫ 1

Le

Sa+1
j (1− Sj)

b dSj

∫ Le

0

Sa
j (1− Sj)

b+1 dSj

≥

∫ 1

Le

LeS
a
j (1− Sj)

b dSj

∫ Le

0

(1− Le)S
a
j (1− Sj)

b dSj

=

∫ Le

0

LeS
a
j (1− Sj)

b dSj

∫ 1

Le

(1− Le)S
a
j (1− Sj)

b dSj

≥

∫ Le

0

Sa+1
j (1− Sj)

b dSj

∫ 1

Le

Sa
j (1− Sj)

b+1 dSj = right.

Thus, we have proved that “Pg(A) is a monotonically

decreasing function on sA” and “Pe(A) is a monotonically

increasing function on sA”.
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